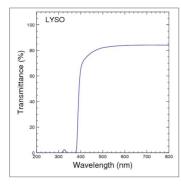
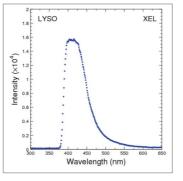
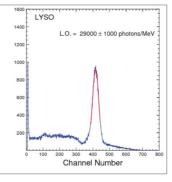
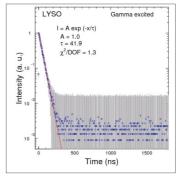


LYSO not only has excellent comprehensive scintillation properties such as high light output, fast attenuation, high density, and strong resistance to radiation damage, but its peak luminescence wavelength (420 nm) is located in the sensitive area of the photomultiplier tube and can be effectively detected; in addition, its physical With stable chemical properties, the crystal can be widely used in medical imaging, high-energy physics and other fields, which is beneficial to obtaining high temporal resolution, spatial resolution and miniaturization of detectors.


General parameters	LYSO(Ce)	Unit
Density	7.25	g/cm ³
Wavelength of Emission Peak	420	nm
Light Output	30,000	ph/MeV
Decay Constant	40	ns
Anti-radiation	1×10 ⁸	rad
Refractive Index	1.82	/
Hardness	5.80	mohs
Hygroscopic	no	/
Cleavage	no	/


Basic Information


Growth technique	Czochralski
Dimension(max) Di	ameter 90 mm×200 mm
Achieved items	Single crystal and array


Characterization

Dimension of LYSO(Ce): 15×15×15 mm; PMT: R1306; Reflector: Teflon(0.80 mm); Radiation source: Cs¹³⁷; HV: 650V; Absolute value of light output: 30,000 photons/MeV; Energy resolution: 10.9%; Decay time: 40 ns

Transmittance curve

X-Ray excited Luminescence curve

Light output curve & Energy resolution curve

Scintillation decay curve by gamma ray excited